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Abstract Time-series analyses of temperature data are important for investigating temperature

variation and predicting temperature change. Here, Mann–Kendall (M–K) analyses of temperature

time-series data in northeastern Bangladesh indicated increasing trends (Sen’s slope of maximum

and minimum yearly temperature at Sylhet of 0.03 �C and 0.026 �C, respectively, and a minimum

temperature at Sreemangal of 0.024 �C) except for the maximum temperature at Sreemangal.

The linear trends showed that the maximum temperature is increasing by 2.97 �C and 0.59 �C
per hundred years, and the minimum, by 2.17 �C and 2.73 �C per hundred years at the Sylhet

and Sreemangal stations, indicating that climate change is affecting temperature in this area. This

paper presents an alternative method for temperature prediction by combining the wavelet tech-

nique with an autoregressive integrated moving average (ARIMA) model and an artificial neural

network (ANN) applied to monthly maximum and minimum temperature data. The data are

divided into a training dataset (1957–2000) to construct the models and a testing dataset (2001–

2012) to estimate their performance. The calibration and validation performance of the models is

evaluated statistically, and the relative performance based on the predictive capability of out-of-

sample forecasts is assessed. The results indicate that the wavelet-ARIMA model is more effective

than the wavelet-ANN model.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Temperature variations due to climate change are a major con-
cern. According to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change (IPCC) (2007),

the global average surface temperature has increased by 0.74
(0.56–0.92 �C) from 1906 to 2005, which is greater than the
corresponding increase of 0.6 (0.4–0.8 �C) for 1901–2000.

The Intergovernmental Panel on Climate Change (IPCC)
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(2007), also noted that the mean annual temperature is
expected to increase by 3.3 �C per century. Even if the mean
annual rainfall remains unchanged, delays in the monsoon

onset and unusual monsoon lulls due to variations in temper-
ature may cause severe disruptions for agricultural activities,
hydroelectric power generation and drinking water supplies.

Food production is particularly sensitive to climate change
because crop yields are directly dependent on climate condi-
tions (temperature and rainfall patterns). In tropical regions,

even small amounts of warming will lead to decreases in the
amount of crops harvested. Higher temperatures will lead to
large declines in cereal (e.g., rice, wheat) production around
the world (Stern, 2007).

Currently, the average temperature in Bangladesh ranges
from 17 �C to 20.6 �C during the winter and from 26.9 �C to
31.1 �C during the summer (Shahid, 2008). The average annual

temperature in Bangladesh is expected to increase by 0.6–
1.4 �C by 2050, and the average monthly temperatures may
continue to rise. An increase in the winter temperature may

reduce the environmental suitability for wheat, potatoes and
other temperate crops that are grown in the Rabi season
(November–April). In Bangladesh, both surface water and

groundwater are required to support irrigation during the
dry months. Increases in temperature may affect irrigation
requirements for all growing seasons, including Rabi (Novem-
ber–April) and Kharif (May–October). Increases in tempera-

ture will increase irrigation demands by 200 mm3 in March
alone. The production of Boro rice in the Sylhet region is more
than 5000 kg/ha, but this value is expected to drastically

decrease upon maximum and minimum temperature increases
of 2 �C and 4 �C. For a 2 �C increase, the Boro rice yield will
decrease by 3.2–18.7%, and for 4 �C, the yield will decrease by

approximately 5.33–36.0% (Basak, 2010).
The non-parametric Mann–Kendall (M–K) test can be used

to detect trends in time-series analyses (Hamed, 2008; Hamed

and Rao, 1998; Yue et al., 2002; Yue and Wang, 2004;
Shadmani et al., 2012). Miao et al. (2012) described the use
of the rank-based Mann–Kendall (M–K) test to assess the sig-
nificance of trends in time-series data. The authors performed

a comprehensive review of the trend and periodicity of sea-
sonal data from Beijing, China for 1724–2009. Linear regres-
sion analysis and the Mann–Kendall (M–K) test were

applied to study rainfall trends.
Over the past years, ARIMA model has been widely used in

predicting of geophysical as well as hydrological time series

(Salas et al., 1980; Salas and Obeysekera, 1982; Mohammadi
et al., 2006; Momani, 2009; Liming et al., 2013). However, it
assumes that data are stationary and has a limited ability to
capture non-stationarities and non-linearities in hydrol-

climatic data (Nourani et al., 2008).
Most artificial neural network (ANN) applications in engi-

neeringareusedforpredictions,inwhichanunknownrelationship

exists between a set of input factors and an output (Shi, 2002).
ANNshavebecomeavaluable tool formodeling non-linear phe-
nomena, such as temperature predictions (S�ahin, 2012; Chenard
and Caissie, 2008), rainfall predictions (French et al., 1992;

Aksoy and Dahamsheh, 2009; Mandal and Jothiprakash, 2012;
Farajzadeh et al., 2014), and groundwater level forecasts
(Daliakopoulos et al., 2005;Yang et al., 2009).

Recently, wavelet transformation has shown excellent per-

formance in hydrological modeling (Okkan, 2012a; Nourani
et al., 2008) as well as in multiple atmospheric and environ-
mental applications (Pal and Devara, 2012; Pal et al., 2014a,
b). Wavelet transformation decomposes the main time series

into subcomponents such that the decomposed data improve
the performance of geophysical and hydrological prediction
models by capturing useful information at various resolution

levels (Karim, 2013; Okkan, 2012b; Okkan and Samui, 2012;
Nourani et al., 2008, 2011).

The wavelet-based ARIMA model can achieve higher pre-

diction accuracy than the conventional ARIMA model (Wei
et al., 2011; Kriechbaumer et al., 2014; Szolgayová et al.,
2014; Fard and Zadeh, 2014). Rahman and Hasan (2014) used
wavelet transformation to improve existing forecasting models

(such as ARIMA) to forecast climate time series (e.g., the
humidity of Rajshahi).

Recently, the combined wavelet-artificial neural network

(Wavelet-ANN) model has been widely used to forecast hydro-
logical and hydrogeological phenomena (Solgi et al., 2014;
Okkan, 2012a,b; Nourani et al., 2009). A non-stationary signal

is decomposed into several stationary signals by a wavelet
transform. Then, ANN is combined with the wavelet trans-
form to improve the prediction accuracy (Zhou et al., 2008).

Ramana et al. (2013) used a combination of the wavelet tech-
nique with an ANN to predict rainfall using monthly rainfall
data from the Darjeeling rain gauge station and found that
the wavelet neural network models performed better than the

ANN models alone. Partal and Cigizoglu (2009) estimated
Turkish daily precipitation data with a wavelet-ANN applica-
tion using wavelet sub-series of various meteorological vari-

ables; the wavelet-ANN model provided a better fit than the
conventional ANN model and a multi-linear regression model.
Adamowski and Chan (2011) proposed a WA–ANN model

based on coupling discrete wavelet transforms (WA) and
ANNs for groundwater level forecasting and found that the
WA–ANN model provided better forecasting accuracy than

the conventional ANN model.
The present study aims at analyzing the trend and pattern

of temperature to see the transient variations. It also develops
an alternative method using wavelet technique to predict

monthly maximum and minimum temperatures. A comparison
between wavelet-ARIMA and wavelet-ANN is conducted to
find out the best-fitted model.

2. Study area and data collection

Sylhet, the northeastern administrative division of Bangladesh,

is located at 24.8917�N latitude and 91.8833�E longitude. Sree-
mangal, which is known as the ‘‘tea capital of Bangladesh”, is
located at 24.3083�N 91.7333�E and is a upazila of the Maul-

vibazar district in the division of Sylhet. The northeastern part
of Bangladesh is an interesting study area because of its natu-
ral resources, such as its tilas (small hills), which contain more

than 150 tea gardens that are sensitive to heavy rainfall and
temperature, and its nearly 400 haors (wetland ecosystem),
which cover approximately 4450–25,000 square km, and its
role in the regional ecosystem. The region supports diverse

livestock as well as the general well-being of a growing popu-
lation that depends on the wetland for their livelihood.

Monthly temperature data from the northeastern part of

Bangladesh, including the Sylhet district and the neighboring
Sreemangal district (Fig. 1), were collected from the



Table 1 Missing data estimation of maximum temperature

for the month May at Sylhet station.

Year Original (�C) Kriging (�C) IDW (�C) NN (�C)

1970 34.4 36.59 36.96 36.7

1980 32.9 34.16 35.45 34.4

1990 35.3 35.52 35.24 35.7

2000 36.7 37.14 36.76 37.6

2010 35 36.01 36.91 36

Root mean square error 1.237 1.828 1.379

Mean absolute percentage

error

2.981 4.197 3.538

Accuracy 97.02% 95.80% 96.46%
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Bangladesh Meteorological Department (BMD), which is the
authorized government organization for meteorological
activities in Bangladesh.

3. Missing data treatment

The problem of handling missing data in an environmental

time series is a serious issue in forecasting (Haworth and
Cheng, 2012). In an environmental time series, missing data
lead to several general problems for research and simulation.

Missing data not only cause difficulties in process identifica-
tion and parameter estimation but can also cause misinterpre-
tations regarding the spatial and temporal variations of

environmental indicators (Gnauck and Luther, 2005). To
estimate missing data, this study applied three traditional
geostatistical interpolation methods to the monthly maximum

and minimum temperature data for the selected weather sta-
tions. The kriging, inverse distance weight (IDW) and nearest
neighbor (NN) geostatistical interpolation techniques were
employed to estimate missing points from the surrounding

known values. Table 1 shows the performance measures root
mean square error (RMSE) and accuracy, for the monthly
maximum temperatures at the Sylhet station for the different

methods. The results show that the RMSE is lowest for krig-
ing and highest for IDW. The accuracy is also highest for
kriging and lowest for IDW. Thus, IDW is not suitable for

estimating the missing values. In contrast, kriging is appro-
priate for estimating missing values. Similar results were
obtained for the maximum temperatures at Sreemangal and
for the minimum temperatures at Sylhet and Sreemangal.

Thus, we conclude that kriging is the best method for esti-
mating missing data.
Sylhet 

Sreemangal 

Figure 1 Locations of t
4. Methods

4.1. Statistical moment

For a monthly time series Yt with a sample size of N, the sta-

tistical moments (mean, variance, skewness and kurtosis coef-
ficient) are used in this study, which have been used in several
studies (Beecham and Chowdhury, 2010; Rashid et al., 2014).

4.2. Trend analysis

There are two types of trend analysis methods; parametric
methods and non-parametric methods. Non-parametric tests

are more suitable than their parametric counterparts when
the data do not meet the assumption of normality (Afzal
et al., 2011). The non-parametric Mann–Kendall (M–K) test
emperature stations.
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is widely used to analyze trends in climatological and hydro-
logical time series (Yue and Wang, 2004).

The Mann–Kendall (M–K) test is commonly applied to

assess the statistical significance of a trend. This test evaluates
whether the outcome values tend to increase or decrease over
time. The test statistic, S (score), is then computed as

S ¼
Xn�1

i¼1

Xn

j¼iþ1

sign ðyj � yiÞ ð1Þ

where signðyi � yjÞ ¼

1 if yj � yi > 0

0 if yj � yi ¼ 0

�1 if yj � yi < 0

8>>><
>>>:

ð2Þ

yj and yi are the annual values for years j and i, respectively,

and j> i. A positive value of S indicates an ‘upward trend’,
and a negative value indicates a ‘downward trend’.

Sen’s estimator has been used in this study to determine the

magnitude of trends in hydro-meteorological time series. Sen’s
method uses a linear model to estimate the slope of the trend
(Salmi et al., 2002).

In the parametric method, a scatter plot of the dependent
variable and the independent variable is constructed. A least-
squares linear regression line is then superimposed on the plot.

4.3. Wavelet analysis

Wavelet analysis has become a popular tool due to its ability to

reveal information within the signal in both the time and scale
(frequency) domains (Nourani et al., 2008). This property
overcomes the basic drawback of Fourier analysis, which is
that the Fourier spectrum provides a comprehensive descrip-

tion of the properties of the non-stationary processes by yield-
ing a mapping that is localized in frequency but global in time
(Pal and Devara, 2012). Wavelet analysis is a mathematical

procedure that transforms the original signal (especially in
the time domain) into a different domain for analysis and pro-
cessing (Dong et al., 2001). This model is suitable for non-

stationary data, i.e., where the mean and autocorrelation of
the signal are not constant over time. Most financial time-
series as well as climatic time-series data are non-stationary;
therefore, wavelet transforms are used for these types of data.

Morlet first considered wavelets as a family of functions
constructed from the translations and dilations of a single
function, which is called the ‘‘mother wavelet”. These wavelets

are defined by Eq. (3)

Wa;bðtÞ ¼ 1ffiffiffiffiffijajp W
t� b

a

� �
; a; b 2 R; a – 0 ð3Þ

The parameter ‘a’ is called the scaling parameter or scale,
and it measures the degree of compression. The parameter

‘b’ is called the translation parameter, which determines the
time location of the wavelet. If jaj < 1; then the wavelet in
‘a’ is a compressed version (smaller support in the time

domain) of the mother wavelet and primarily corresponds to
higher frequencies. When jaj > 1; then Wa;bðtÞ has a larger time

width than WðtÞ and corresponds to lower frequencies.
Thus, wavelets have time widths that are adapted to their
frequencies, which is the main reason for the success of the
Morlet wavelets in signal processing and time–frequency signal
analysis.

The wavelet transform is implemented using a multi-
resolution pyramidal decomposition technique. A recorded
digitized time signal S(n) can be divided into its detailed cD1

(n) and smoothed (approximation) cA1(n) signals using a
high-pass filter (HiF-D) and a low-pass filter (LoF-D), respec-
tively. Discrete wavelet transformation is the basic tool

required for analyzing time series via wavelets and plays a role
analogous to that of the discrete Fourier transformation in
spectral analysis (Percival and Walden, 2000). The discrete
wavelet transform (DWT) is based on sub-band coding and

yields a fast computation of the wavelet transform. It is easy
to implement and reduces the required computation time and
resources. The dyadic decomposition can be implemented in

a real data set fYjg, where the scale parameter ‘a’ is repre-

sented in the form of 2�j and the translation parameter ‘b’ is

represented by K2�j, where j, k 2 Z. The discrete wavelet func-
tion can be expressed as

Wj;kðtÞ ¼ 1

2 j W
1� K2 j

2j

� �
ð4Þ
4.4. ARIMA model

The autoregressive integrated moving average (ARIMA)
method can be used to identify complex patterns in data and
to generate forecasts (Box and Jenkins, 1976). An ARIMA

model predicts a value in a response time series as a linear
combination of its own past values (Mudelsee, 2014). ARIMA
models can accommodate seasonality (Makridakis et al.,
1998). ARIMA models involve a combination of three

types of processes: (1) an autoregressive (AR) process, (2)
differencing to strip the integration (I), and (3) a moving
average (MA) process. The general form of the ARIMA

(p, d, q) model is

;pðLÞð1� LÞdYt ¼ h0 þ hqðLÞUt ð5Þ

where h0 represents the intercept term, ;pðLÞ represents the AR

part (1�;1L� . . .� ;pLp), hqðLÞ represents the MA part

(1�h1L� . . .� hpL
p), and Ut represent a zero mean white pro-

cess with constant variance.

4.5. ANN Model (NARX model)

A neural network can be used to predict future values of pos-

sibly noisy multivariate time-series based on past histories and
can be described as a network of simple processing nodes or
neurons that are interconnected to each other in a specific
order to perform simple numerical manipulations

(Adamowski and Chan, 2011).
The NARX (nonlinear autoregressive network with exoge-

nous inputs) model is based on the linear ARX (autoregressive

with exogenous input) model, which is commonly used in
time-series modeling. The defining equation for the NARX
model is

yðtÞ ¼ fðyðt� 1Þ; yðt� 2Þ; . . . ; yðt� nyÞ;
uðt� 1Þ; uðt� 2Þ; . . . ; uðt� nuÞ ð6Þ



Figure 2 Wavelet analysis of monthly maximum temperature of Sylhet. The thick curved black line in the wavelet power spectrum

represents the cone of influence (COI). The dashed line in the global wavelet spectrum shows the 95% confidence level. The strength of

power (%) in the contour image in the wavelet power spectrum is labeled by color (right corner) (MATLAB, 2013).
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where the next value of the dependent output signal yðtÞ is
regressed on previous values of the output signal and previous
values of an independent (exogenous) input signal. The NARX

model can be implemented using a feedforward neural network
to approximate the function f.

4.6. Coupled wavelet and ARIMA (wavelet-ARIMA model)

Noise in the time-series data will significantly affect the accu-
racy of the forecast because ARIMA methods cannot handle
non-stationary data without preprocessing the input data

(Shan et al., 2014). To solve this problem, a wavelet
denoising-based model is proposed.

When conducting wavelet analysis, the selection of the

optimal number of decomposition levels is one of the keys to
determine the performance of model in the wavelet domain.
To select the number of decomposition levels, the following

formula is used (Wang and Ding, 2003):

L ¼ int½logðNÞ� ð7Þ
Te
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T

Figure 3 Wavelet decomposition of ma
where L and N are number of decomposition levels and time
series length, respectively. For this study, N = 672; therefore,
L � 3. Okkan (2012a) used three decomposition levels for

monthly reservoir inflow prediction. Kisi and Cimen (2011)
used three decomposition levels in their monthly stream-flow
forecasting study. Several studies have obtained the best result
using three decomposition levels. The choice of mother wavelet

depends on the data to be analyzed. Daubechies wavelets show
a good trade-off between parsimony and information richness
and identical events across the observed time series are pro-

duced by it in so many fashions that most prediction models
cannot recognize them well (Reis and Silva, 2005; Benaouda
et al., 2006). The procedure of wavelet-ARIMA model is

described as follows:
Step 1: The wavelet transformation, which is a Daubechies-5

type and a decomposition level 3, is applied. Applica-
tion to the series Yt (t= 1, 2,. . ., T) results in 4 series,
which are denoted by A3t D3t, D2t and D1; t = 1,

2,. . ., T. WT (Yt; t= 1, 2,. . ., T) = {A3t, D3t, D2t,
D1t: t= 1, 2,. . ., T}.
ime (Month) 
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Figure 4 Wavelet de-noised signal of maximum temperature at Sylhet.
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Figure 5 Wavelet de-noised signal of minimum temperature at Sylhet.

Table 2 Augmented Dickey–Fuller (ADF) unit root test of

original and 1st differenced series.

Station Include

in test

equation

Original series 1st differenced

series

ADF

statistic

p-value ADF

statistic

p-value

Sylhet

maximum

temperature

Drift �2.369 0.151 �12.355 0.000

Drift and

linear trend

�3.059 0.117 �12.365 0.000

None 0.089 0.711 �12.359 0.000
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Step 2: The series is reconstructed by removing the high-
frequency component, using the wavelet denoising
method.
WT�1fA3t;D3t;D2t; t ¼ 1; 2; . . . ;Tg ¼ Y�
t ; t ¼ 1; 2; . . . ;T
Step 3: The appropriate ARIMA model is applied to
the reconstructed series to forecast the test series.

fY �
t ; t ¼ 1; 2; . . . ; T !

ARIMA
forecast Y f

t ; t ¼ T þ 1; . . . ; T þ ng

4.7. Coupled wavelet and ANN (wavelet-ANN) model

A wavelet-ANN model was constructed in which the subseries
fD1;D2;D3;A3g at time t are used as the inputs of the ANN
and the denoised time series at time t is the output of the

ANN network. The data set was then loaded and divided into
two parts: training data (first 528 values of each data set) and
testing data (subsequent 144 values of each data set). Tapped



Table 3 Parameter estimation of de-noised maximum tem-

perature at Sylhet.

Variable Coefficient Std. error t-Statistic p-Value

AR(1) 0.111 0.038 2.903 0.004

AR(2) �0.144 0.037 �3.939 0.000

AR(4) �0.559 0.033 �16.720 0.000

SAR(24) 0.076 0.033 2.327 0.020

MA(1) 0.683 0.042 16.274 0.000

MA(2) 0.740 0.035 21.308 0.000

MA(3) 0.537 0.038 14.180 0.000

SMA(12) �0.973 0.004 �233.814 0.000

R-squared 0.903

Adjusted R-squared 0.902 Akaike info criterion �1.223

Durbin–Watson stat 1.997 Schwarz criterion �1.167

Hannan–Quinn

criterion

�1.202

Figure 6 Correlogram-Q-statistics maximum temperature series

at Sylhet.
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Figure 7 Histogram of maximum temperature at Sylhet.
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delay lines were used for both the input and the output, so the
training began with the next data point of the tapped delay

line. A two-layer series–parallel NARX network was created
using the function narxnet.

The Levenberg–Marquardt (LM) algorithm was utilized to

train the ANN models because it has been shown to be fast,
accurate, and reliable (Adamowski and Karapataki, 2010).
To identify the optimal number of hidden neurons, a trial

and error procedure was initiated with two hidden neurons,
and the number of hidden neurons was increased to 20 with
a step size of 1 in each trial (Matarneh et al., 2014; Okkan,
2012a; Ramana et al., 2013). For each set of hidden neurons,

the network was trained in batch mode to minimize the mean
square error of the output layer. To identify overfitting during
the training, a cross validation step was performed by evaluat-

ing the efficiency of the fitted model. The training was stopped
when there was no significant improvement in the efficiency,
and the model was then used for its generalization properties

(Ramana et al., 2013).The trainlm function was used for
training, and data were randomly divided for training, valida-
tion and testing. The toolbox function (closeloop) was used to
perform an iterated prediction of the testing data (144 time

steps).

4.8. Comparison of model performance

Model performance was assessed using root mean square
error (RMSE), percent of bias (PBIAS) and index of
agreement (d). Root mean square error (Singh et al., 2005)

is an estimate of the standard deviation of the random
components in the data, and the best model has a minimum
RMSE. The percent of bias (Gupta et al., 1999) measures the

average tendency of the simulated data to be larger or smaller
than the observed counterparts. The optimal PBIAS value is
0.0, and low values indicate accurate model simulations. The
index of agreement (Willmott, 1981) measures the degree of

model forecast error and varies from 0 (no correlation) to 1
(perfect fit).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

t¼1

½YtðobsÞ � YtðpredÞ�
n

2
s

ð8Þ
PBAISð%Þ ¼
PN

i¼1ðOi � PiÞ � 100PN
i¼1Oi

ð9Þ
d ¼ 1:0�
PN

i¼1jOi � PijPN
i¼1ðjPi �Oj þ jOi �OjÞ ð10Þ
where Oi, Pi and O are the observed data, the model-simulated
data and the observed mean, respectively.
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Figure 8 Actual, fitted, residual graph of maximum temperature at Syhet.

Figure 9 Neural network performance curve of maximum

temperature at Sylhet.

Figure 10 Regression value of NARX network during training

of maximum temperature at Sylhet.
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4.9. Programs used

In this study, missing data treatment was conducted using

Golden Surfer software (version 10.1.561). Statistical trend
and ARIMA model were conducted using R software pack-
ages (R-3.1.2). Wavelet analysis has been carried out using

MATLAB software package. A Levenberg–Marquardt (LM)
algorithm based ANN model was prepared using a MATLAB
code (MATLAB, 2013).

5. Results and discussion

Wavelet transformation decomposed the time series into time–

frequency space, enabling the identification of both the domi-
nant modes of variability and how those modes vary with time.
Fig. 2 shows the wavelet analysis of monthly maximum
temperature of Sylhet. It identified significant variability (at
the 95% confidence level) at an 8–16-month period from 1957

to 2012. The global wavelet spectrum provided two significant
peaks above the 95% confidence level at 4–8-month and
8–16-month periods, respectively. Fig. 3 shows the wavelet

decomposition of the maximum temperature signal for the
Sylhet station. The signal wavelet is reconstructed using the
approximation-and-detail process described above, and wave-
let denoising is performed. Figs. 4 and 5 show the denoised sig-

nals of the maximum and minimum temperatures at the Sylhet
station, respectively. The red lines indicate the original signals,
and the black lines indicate the denoised signals. Outliers and



Figure 11 Prediction using NARX network of maximum temperature at Sylhet.
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noise are removed from the denoised signal, but the trend is
the same as in the original series; this is the main mechanism
of wavelet denoising.

The augmented Dickey–Fuller (ADF) test was applied to
test the unit root in the denoised maximum and minimum tem-
perature series of the selected stations for different situations,

such as in the presence of a drift, a drift and a linear trend, and
no drift and a linear trend. Table 2 presents the ADF unit root
test results for the original and 1st differenced series. The auto-

correlation function (ACF) and partial autocorrelation func-
tion (PACF) are used to identify the order of the tentative
model. The correlogram shows that the ACF has significant

spikes at several lags, which display a periodic order over
12 months due to seasonal effects. The PACF also has signifi-
cant spikes at several lags. Thus, the model may be a seasonal
Figure 12a Monthly mean
autoregressive integrated moving average (SARIMA) model.
The least squares method is applied to estimate the parameter
of the time series. For the Sylhet maximum temperature series,

the final candidate model for estimating the parameter is SAR-
IMA (3, 1, 3) (1, 1, 1)12. The estimated values, standard error,
t-statistic and p-values for the SARIMA (3, 1, 3) (1, 1, 1)12
model are shown in Table 3. All coefficients for the estimated
model are significant at the 5% level of significance. The R2

value of the estimated model is 0.903, indicating that approx-

imately 90.3% of the variation in the monthly maximum tem-
perature can be explained by the estimated previous lag value
and the lagged error terms. The R2 and adjusted R2 values sug-

gest the goodness of fit of the model. The autocorrelation was
evaluated using the Durbin–Watson (D–W) test, and the
results suggest that the estimated coefficients are free from
of the selected stations.
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autocorrelation problems because the D–W value is approxi-
mately 2. The minimum values of the Akaike information cri-
terion (AIC), Schwarz information criterion (SC) and

Hannan–Quinn criterion (H–Q) are also satisfactory. The cor-
relogram and Q-statistics show that there are no significant
spikes in the ACFs or PACFs (Fig. 6), which indicates that

the residuals of this SARIMA model are white noise. There
are no other significant patterns in the time series, and no other
AR (p) and MA (q) terms need to be considered. Fig. 7 also

shows that the histogram pattern of the maximum tempera-
tures at Sylhet follows a normal distribution. Thus, the resid-
uals are normally distributed. Fig. 8 shows that the fitted
values nearly match the actual values and that the residuals

do not vary significantly; thus, the fit is good. Hence, the final
wavelet-ARIMA models for the selected variables were
chosen.
Figure 12b Monthly varianc

Figure 12c Monthly skewne
In this study, a Levenberg–Marquardt (LM) algorithm
based on the ANN model was prepared using a MATLAB
code (MATLAB, 2013).The original data were decomposed

into different subseries, and the denoised time series was
selected as the target of the ANN. The first 528 data points
(January 1957–December 2000) were used to calibrate the

model, and the last 144 data points (January 2001–December
2012) were used to test the model. After the network was
trained, the network performance was verified using a neural

network performance curve (Fig. 9), which shows that the val-
idation set’s error curve reaches a minimum at different itera-
tion numbers, indicating a good data division. The optimal
number of hidden layers (10 for the maximum and minimum

temperatures at Sylhet and 8 for the maximum and minimum
temperatures at Sreemangal) was selected by trial and error.
The number of epochs that are used to train was set to 1000.
e of the selected stations.

ss of the selected stations.
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The training of ANN stopped when the error achieved 10�5 or
when the number of epochs reached 1000. The R-value is
greater than 0.9 (Fig. 10), which implies that the training data

were well fit. The ANN was then applied to predict the testing
data for the respective variables. Fig. 11 shows that the
expected outputs and network predictions are similar.

To determine the statistical moments, such as the mean,
variance, skewness and kurtosis coefficient, data from the same
month for all of the years at each station were considered

(January in 1957–2012 from Sylhet form a series, February
in 1957–2012 form a series, and so on). The monthly variations
of the given statistical moments are shown in Figs. 12a–12d.
The results show that the means of the maximum temperature

at Sylhet and Sreemangal are nearly identical, and the means
are constant from May to October. Although several small
deviations are observed, the means of the minimum tempera-

tures at Sylhet and Sreemangal are similar from April to Octo-
ber. The variances of the maximum and minimum
temperatures of the respective stations are also small from July

to September. Abrupt variations were observed from January
to June and from October to December, especially for the min-
imum temperature at Sreemangal. The skewness coefficients of

the minimum temperatures at Sylhet and Sreemangal are neg-
ative from March to November (i.e., the means are lower than
Figure 12d Monthly kurtos

Table 4 MK Statistics and their corresponding p-value at 5% sign

Parameter Station Sen’s Slope Ken

Maximum temperature Sylhet 0.002 0.13

Sreemangal 6.54E-4 0.03

Minimum temperature Sylhet 0.002 0.05

Sreemangal 0.002 0.06

Yearly-average maximum temperature Sylhet 0.031 0.49

Sreemangal 0.005 0.14

Yearly-average minimum temperature Sylhet 0.026 0.41

Sreemangal 0.024 0.40
the medians in the corresponding series), whereas the skewness
coefficients of the maximum temperatures at Sylhet and Sree-
mangal are positive (i.e., the means are higher than the medi-

ans in the corresponding series), except for June and
November. The variation of the kurtosis coefficient for the
minimum temperature at Sreemangal is relatively high and

has mostly positive values, whereas the kurtosis coefficient
for the maximum temperature at Sylhet has no significant vari-
ation and is close to zero; i.e., the data have a nearly normal

distribution. The minimum temperature curve for Sylhet and
the maximum temperature curve for Sreemangal show that
the variation is generally between 0 and 3, which indicates a
normal distribution.

The results of the Mann–Kendall (M–K) tests for the
monthly temperature data series from the two stations are
shown in Table 4. The p-values of the Mann–Kendall (M–K)

tests indicate trends in the maximum and minimum tempera-
ture data for Sylhet. There is no trend in the maximum temper-
ature series for Sreemangal because the p-value (0.123) is

greater than 0.05, but an increasing trend is observed in the
minimum temperature data for Sreemangal. The annual
maximum and minimum temperatures of the Sylhet station

show an increasing trend (p-value < 0.0001). The maximum
temperature at the Sreemangal station did not show a trend
is of the selected stations.

ificance level for Sylhet and Sreemangal Stations.

dall’s s p-value

(two tailed test)

alpha, ɑ Test interpretation

7 <0.0001 0.05 Trend in series

7 0.123 0.05 No significant trend in series

5 0.032 0.05 Trend in series

0 0.013 0.05 Trend in series

0 <0.0001 0.05 Trend in series

7 0.086 0.05 No significant trend in series

6 <0.0001 0.05 Trend in series

7 <0.0001 0.05 Trend in series



Table 5 Linear trends for annual maximum and minimum temperatures in selected regions.

Station Yearly maximum temperature Yearly minimum temperature

% of increasing rate(�C) Climate line (�C) % of increasing rate (�C) Climate line (�C)

Sylhet 2.97 32.49 2.17 16.57

Sreemangal 0.59 33.49 2.73 14.73
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(p-value = 0.086), but the p-value for the minimum tempera-
ture (<0.0001) indicates an increasing trend. Sen’s slope,
which refers to the slope of the trend, shows that the maximum

and minimum temperatures at Sylhet had a trend of 0.002
± 0.05 �C per month. The same trend is observed for the min-
imum temperatures at Sreemangal, whereas the maximum

temperatures have no significant trend. The annual maximum
temperature at Sylhet has a trend of 0.031 ± 0.05 �C per year,
and the minimum temperature at Sylhet has a trend of 0.026

± 0.05 �C per year, which is a clear indication of warming in
this region. Similarly, the annual minimum temperature at
Sreemangal has a trend of 0.024 ± 0.05 �C per year. The
trends of the yearly maximum and minimum temperatures

were analyzed for each station using linear regression analysis.
A summary of the trend analysis is presented in Table 5 and
indicates increasing trends for the yearly maximum and mini-

mum temperatures at both the Sylhet and Sreemangal stations.
The maximum temperatures at the Sylhet station have a high
rate of increase (2.970.024 ± 0.05 �C per hundred years),

whereas the Sreemangal station has a comparatively small rate
of increase (0.59 �C per hundred years). Increasing trends for
the yearly minimum temperature are observed at both stations,

with rates of 2.17 �C per hundred years and 2.73 �C per hun-
dred years for the Sylhet and Sreemangal stations, respectively.

According to WMO (World Meteorological Organization),
the regional climatic scenario is changed after each 50 km dis-

tance. As the distance from Sylhet and Sreemangal is 81.4 km,
this difference in geographic location is expected to influence
the annual trend of temperature of this area. The magnitude
0.
13

7 

0.
46

3 

0.
37

2 0.
50

4 

0.
10

8 0.
29

6 

0.
59

8 

1.
38

9 

0.
02

 0.
13

 

0.
18

 

0.
24

 

0.
96

 

0.
95

 

0.
86

 

0.
94

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sylhet maximum
temperature

Sylhet minimum
temperature

Sc
al

e 
of

 th
e 

to
ol

s 

Va

(RMSE) In Sample Forecast Error (Wavelet-ARIMA)
(RMSE) Out Sample Forecast Error (Wavelet-ARIMA)
PBIAS (Wavelet-ARIMA)
d (Wavelet-ARIMA)

Figure 13 Comparison of predictive capability betwe
of temperature at different stations varied between 0 and
0.26% of the normal annual temperature per year (IWFM,
2013). It was also found that the northern part of the country

has a higher rate of increase in mean temperature compared to
the mid-western and eastern hilly regions (IWFM, 2013). In
our study, the difference between the trend of maximum tem-

perature of Sylhet and Sreemangal is 0.026 �C per year. More-
over, the difference between the trend of minimum
temperature of Sylhet and Sreemangal is 0.002 �C per year.

The predictive capabilities of the wavelet-ARIMA and
wavelet-ANN models were compared using RMSE, d and
PBIAS. The in-sample forecast was produced using the maxi-
mum temperature data for Sylhet over 528 months between

1957 and 2000, and the remaining 144 months from 2001 to
2012 were used for the out-sample forecast. The same proce-
dure was also used for the other variables. The in-sample fore-

cast RMSE and out-sample forecast RMSE are presented in
Fig. 13. The results show that for the maximum temperature
data of Sylhet, the RMSEs of both the in-sample and out-

sample data are lower than those of the wavelet-ANN
approach. Similar results were obtained for the other variables.
For good predictive capability, the PBIAS value should be

close to zero, and the index of agreement should be close to
1. The PBIAS value for the denoised maximum temperature
of Sylhet is 0.02, which is satisfactory, and the index of agree-
ment is 0.96, which indicates a good predictive capability com-

pared to the wavelet-ANN approach (PBIAS = 0.18 and
d = 0.86). However, the significance of differences between
residuals was evaluated using tests of the equality of two
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Figure 14a Out sample forecast for de-noised maximum tem-

perature at Sylhet with wavelet-ARIMA (January 2001–December

2012).
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Figure 14b ANN predicted for de-noised maximum temperature

at Sylhet with wavelet-ANN (January 2001–December 2012).
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means. The averages of residuals for the in-sample forecast
from wavelet-ARIMA and wavelet-ANN are 0.00891 and
0.05897, respectively. The corresponding averages for the

out-sample forecast are 0.00028 and �0.0605, respectively.
According to the test of equality of two means, the difference
between residuals for the in-sample forecast is not significant

(z-value = �0.026 < 1.96). The difference between the
residuals for the out-sample forecast is also insignificant
(z-value = 0.017 < 1.96).

Figs. 14a and 14b compare the original data with out-

sample forecasted data for the denoised maximum temperature
of Sylhet for both approaches. A visual inspection shows that
the original data are more similar to the out-sample forecasted
data for the wavelet-ARIMA approach than for the wavelet-

ANN approach. This result might be due to the denoised sig-
nals that were used, in which the outliers were removed by the
wavelet technique, whereas ARIMA uses the first and seasonal

differences, which make the data stationary.

6. Conclusion

This study assessed the characteristics of temperature data and
the predictive capabilities of two models for predicting temper-
atures in northeastern Bangladesh. The analysis indicates large

temperature variations in this region. The results of this study
can be summarized as follows. Mann–Kendall tests showed
increasing trends in the maximum and minimum temperatures

at Sylhet as well as in the minimum temperature at Sreemangal
(Kendall’s s = 0.137, 0.555, 0.060, respectively). Sen’s slope
for the data was approximately 0.002 �C per month except
for the maximum temperature at Sreemangal, which showed

no significant trend (p-value = 0.123, which is greater than
maximum threshold for the null hypothesis, ɑ = 0.05). The
yearly maximum and minimum temperatures at Sylhet and

the yearly minimum temperatures at Sreemangal showed
increasing trends (Kendall’s s = 0.490, 0.416, 0.407, respec-
tively), but the maximum temperature at Sreemangal showed

no significant trend (p-value = 0.086, which is greater than
maximum threshold for the null hypothesis, ɑ = 0.05). The
yearly maximum and minimum temperatures exhibited
increasing trends of 0.031 �C and 0.026 �C per year at Sylhet,

respectively, and the yearly minimum temperature at Sreeman-
gal displayed an increasing trend of 0.024 �C. These trends
may be a result of climate change in this region. The linear

trends were positive in all cases, indicating that the tempera-
ture is increasing in this region. The temperature time series
were smoothed using wavelet transformations, and the wavelet

denoised signals were then used to fit the ARIMA model. For
the monthly maximum and minimum temperatures at the Syl-
het and Sreemangal stations, the ARIMA models were (3, 1, 3)

(1, 1, 1)12, (2, 1, 3) (1, 1, 1)12, (3, 1, 5) (1, 1, 1)12 and (4, 1, 2) (1,
1, 1)12, respectively. Wavelet-ANN models were constructed
using subseries of the denoised signals with the necessary ver-
ification. The predictive capability and accuracy (using the

RMSE of the in-sample and out-sample data) were evaluated
using the percent of bias (PBIAS) and the index of agreement
(d) for the two models. The results indicate that the wavelet-

ARIMA model is better for predicting temperatures in this
region.
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Szolgayová, E., Arlt, J., Blöschl, G., Szolgay, J., 2014. Wavelet based

deseasonalization for modelling and forecasting of daily discharge

series considering long range dependence. J. Hydrol. Hydromech.

62 (1), 24–32. http://dx.doi.org/10.2478/johh-2014-0011.

Wang, W., Ding, S., 2003. Wavelet network model and its application

to the predication of hydrology. Nat. Sci. 1 (1), 67–71.

Wei, Y., Wang, J., Wang, C., 2011. Network traffic prediction based

on wavelet transform and seasonal ARIMA model. In: Lecture

Notes in Computer Science. 6677, 152–159. 8th, International

Symposium on Neural Networks; Advances in neural networks –

ISNN 2011: 8th International Symposium. Part III; 2011; Guilin,

China. ISBN: 978-3-642-21110-2.

Willmott, C.J., 1981. On the validation of models. Phys. Geogr. 2 (2),

184–194. http://dx.doi.org/10.1080/02723646.1981.10642213.

Yang, Z.P., Lu, W.X., Long, Y.Q., Li, P., 2009. Application and

comparison of two prediction models for groundwater levels: a case

study in Western Jilin Province, China. J. Arid. Environ. 73 (4–5),

487–492. http://dx.doi.org/10.1016/j.jaridenv.2008.11.008.

Yue, S., Wang, C., 2004. The Mann–Kendall test modified by effective

sample size to detect trend in serially correlated hydrological series.

Water Resour. Manage. 18 (3), 201–218. http://dx.doi.org/10.1023/

B:WARM.0000043140.61082.60.

Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall

and Spearman’s rho tests for detecting monotonic trends in

hydrological series. J. Hydrol. 259 (1–4), 254–271. http://dx.doi.

org/10.1016/S0022-1694(01)00594-7.

Zhou, H.C., Peng, Y., Liang, G.H., 2008. The research of monthly

discharge predictor-corrector model based on wavelet decomposi-

tion. Water Resour. Manage. 22 (2), 217–227. http://dx.doi.org/

10.1007/s11269-006-9152-x.

http://dx.doi.org/10.1016/j.jastp.2012.05.014
http://dx.doi.org/10.1016/j.jastp.2012.05.014
http://dx.doi.org/10.1002/2014JD022322
http://dx.doi.org/10.1002/2014JD022322
http://dx.doi.org/10.1016/j.scitotenv.2014.07.067
http://dx.doi.org/10.1016/j.scitotenv.2014.07.067
http://dx.doi.org/10.1623/hysj.54.2.234
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0220
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0220
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0225
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0225
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0225
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0225
http://dx.doi.org/10.1007/s11269-013-0374-4
http://dx.doi.org/10.1007/s11269-013-0374-4
http://dx.doi.org/10.2166/wcc.2014.031
http://dx.doi.org/10.2166/wcc.2014.031
http://dx.doi.org/10.1109/TPWRS.2004.840380
http://dx.doi.org/10.1109/TPWRS.2004.840380
http://dx.doi.org/10.1016/j.asr.2012.06.021
http://dx.doi.org/10.1029/WR018i004p01011
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0255
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0255
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0255
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0260
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0260
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0260
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0260
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0260
http://dx.doi.org/10.1007/s11269-011-9913-z
http://dx.doi.org/10.1002/hyp.6820
http://dx.doi.org/10.12733/jcis9971
http://dx.doi.org/10.12733/jcis9971
http://dx.doi.org/10.1061/(ASCE)0887-3801(2002)16:2(152)
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03740.x
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03740.x
http://dx.doi.org/10.1155/2014/279368
http://dx.doi.org/10.2478/johh-2014-0011
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0305
http://refhub.elsevier.com/S1018-3647(15)00113-5/h0305
http://dx.doi.org/10.1080/02723646.1981.10642213
http://dx.doi.org/10.1016/j.jaridenv.2008.11.008
http://dx.doi.org/10.1023/B:WARM.0000043140.61082.60
http://dx.doi.org/10.1023/B:WARM.0000043140.61082.60
http://dx.doi.org/10.1016/S0022-1694(01)00594-7
http://dx.doi.org/10.1016/S0022-1694(01)00594-7
http://dx.doi.org/10.1007/s11269-006-9152-x
http://dx.doi.org/10.1007/s11269-006-9152-x

	Comparative study of wavelet-ARIMA �and wavelet-ANN models for temperature �time series data in northeastern Bangladesh
	1 Introduction
	2 Study area and data collection
	3 Missing data treatment
	4 Methods
	4.1 Statistical moment
	4.2 Trend analysis
	4.3 Wavelet analysis
	4.4 ARIMA model
	4.5 ANN Model (NARX model)
	4.6 Coupled wavelet and ARIMA (wavelet-ARIMA model)
	4.7 Coupled wavelet and ANN (wavelet-ANN) model
	4.8 Comparison of model performance
	4.9 Programs used

	5 Results and discussion
	6 Conclusion
	Acknowledgement
	References


