Journal of King Saud University — Science (2017) 29, 133-136

King Saud University
Journal of King Saud University —
Science

www.ksu.edu.sa
www.sciencedirect.com

-5cience

ags2sdlloldl

o sy

King Saud University

SHORT COMMUNICATION

Line with attached segment as a model of
Helmholtz resonator: Resonant states completeness

@ CrossMark

L.Y. Popov *, A.L. Popov

ITMO University, Kronverkskiy, 49, Saint Petersburg 197101, Russia

Received 15 May 2016; accepted 17 July 2016
Available online 8 August 2016

KEYWORDS Abstract Quantum graph consisting of a line with attached segment is considered as a simple

model of the Helmholtz resonator. Completeness of resonant states in the space of square integrable
functions on the segment is proved. Relation between the completeness and the factorization of the
characteristic function in Sz.-Nagy model is discussed.
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convex hull of the scatterer. It is not yet proved. There are only
some examples of solved particular problems (Shushkov, 1985;
Vorobiev and Popov, 2015). There is an interesting relation
between the scattering problem and functional model
(Sz.-Nagy et al., 2010; Nikol’skii, 2012; Khrushchev et al.,
1981; Peller, 2003). More precisely, the completeness is related

1. Introduction

The problem of resonances and resonant states attracted great
attention starting from famous Lord Rayleigh work (Lord
Rayleigh, 1916). But rigorous mathematical description of
the problem was given at the end of 20-th century. Particularly,

it became clear that resonances are eigenvalues of some dissi-
pative operator (Lax and Phillips, 1967, 1976; Adamyan and
Arov, 1965). A few models and asymptotic approaches to
the problem were developed on the background of this opera-
tor treatment (see, e.g., Hislop and Martinez, 1991;
Gadyl’shin, 1997; Popov, 1993; Popov, 1992a.b) and refer-
ences therein). One of the intriguing question in this problem
is: What is a domain Q which gives one the completeness of
the resonant states in L,(Q)? Our hypothesis is that it is the
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to the factorization of the scattering matrix characteristic
function for the functional model). We use this relation in
the present paper. Namely, we consider the simplest, one-
dimensional, model of the Helmholtz resonator and investigate
the scattering matrix for this quantum graph. This system is, in
some sense, close to a waveguide with local perturbation (see,
e.g., (Borisov et al., 2001, 2013; Frolov and Popov, 2000; Wulf
et al., 2013; Popov and Popova, 1993a,b). The rest of
Introduction is devoted to the description of the model.

Let us define the Schrédinger operator on the graph T
consisting of three edges Q; U Q, UQ; (see Fig. 1) coupled at
vertex V. OI' = V.

Definition. The Schrodinger operator H on I' acts as — 5’7 at
each edge Q;. The operator has the following domain:
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Figure 1  Graph geometry. Arrows show the direction at edges.
The origin at Q3 is at vertex V), the origins at Q;,€, are
at vertex V.

dom H={y € C([) N W(T\ V);h, (—0) = ¥, (+0) =5 (L~ 0),
Y1 (=0) + 5 (+0) = Y3(L = 0) = utf(0),15(0) = 0.}
)

Here W3 is the Sobolev space, % (V) is the derivative of the

solution at the vertex V of edge Q; in the outgoing direction
from the vertex.

We consider the scattering in the framework of Lax-Phillips
approach (Lax and Phillips, 1967, 1976). Let us briefly describe
the approach. Consider the Cauchy problem

{ u;ll = u,’;x’ (2)
u(x,0) = up(x), u)(x,0) = u;(x),x € I.

Let £ be the Hilbert space of two-component functions (uy, u;)
on the graph with finite energy

1o, er)[J = 27" /F(Iuél2 + [ [*)dx.

The pair (ug,u;) is called the Cauchy data. Solving operator
for problem (2), U(t), U(t)(ug,ur) = (u(x, t),u,(x, 1)), is uni-
tary in &. Unitary group U(?)|,, has two orthogonal (in &)
subspaces, D_ and D,, called, correspondingly, incoming
and outgoing subspaces.

Lemma 1.1. Outgoing subspace D has the following properties:

(@) U(t)Dy C D4, t > 0;
(b) N=oU(¢)Dy = {0},
(C) Ut<0U(t)D+ =¢.

D_ has the analogous properties (with the natural replace-
ment 1 > 0 < ¢t < 0).

Lemma 1.2. Subspaces Dy can be chosen as follows:

D+ = {(uo,ul) LU = u{,,x S Ql;ul = u(),x S Qz,
Uy = Uy :O,XGQ3},

D_ = {(up,uy) : uy = uy,x € Qu; —uy = uy, x € Qy;

up =uy =0,x € Q3}.

Lemma 1.3. There is a pair of isometric maps
T, : £ — Ly(R,C?) having the following properties:
T.U(t) = expiktT., T,D,=H.(C*), T.D_=H(C),

where Hi is the Hardy space.

It is said that 7, (7_) gives one the outgoing (incoming)
spectral representation of the unitary group U(z).
Let K=£6 (D, ®D_). Consider a semigroup Z(t)=
PxU(1)|g, t>0, Pgisa projector to K. Let B be the genera-
tor of the semigroup Z(¢) : Z(t) = expiBt,t > 0. Data which
are eigenvectors of B are called resonant states. Operator
T ,Tjr] is called the scattering operator. It acts as a multiplica-
tion by a matrix-function S(k) which is the boundary value at
the real axis of analytic matrix-function in the upper half-plane
k such that ||S(k)|| < I for 3k > 0 and S*S = I almost every-
where on the real axis. This analytic matrix-function S(k) is
called the scattering matrix.

2. Scattering matrix

To describe the scattering matrix S = {s;,(k)} and related
topics, one can consider the whole set of solutions of the scat-
tering problem lﬁz having the following form.

l//; = 511 (k) exp(—ikx), X e Q]7
T = exp(—ikx) + s12(k) exp(ikx), x € Qy,
W, = exp(ikx) + 551 (k) exp(—ikx), x € Q,

l//;r = Szz(k) exp(ikx),x €y,

Vi =va, v =y
For x€Q; the solutions have forms psin(kx). Here
si(k) =sp(k) =1t is the transmission coefficient and
s12(k) = s21(k) = r is the reflection coefficient.

Let us determine an isometric map 7_ : £ — L,(R,C?) as a
closure of 7_ defined on the set of smooth functions in &:

T 7L <®7\P;(7k)>£ - _ (ik)illpli.z
o= ((@»Pr(-,k»g)’ LPLZ‘( Vis )

Lemma 2.1. Map T_ gives one a spectral representation for the
unitary group U(t). The following relations take place.

T-D_=H(C’), T.D,=SH (C,
T_U(t) = exp(ikt)T-.

Matrix-function S is an inner function in C, and
K. =T K=H.6SH., T_Z({)|x = Px exp(ikt)T_.

As an inner function, S can be represented in the form
S =T10O, where II is the Blaschke-Potapov product and @ is
a singular inner function (Sz.-Nagy et al., 2010; Nikol’skii,
2012; Khrushchev et al., 1981; Peller, 2003). We are interested
in the completeness of the system of resonant states. It is
related with the factorization of the scattering matrix.

Theorem 2.2 ((Completeness criterion), (Nikol'skii, 2012)).
Let S be an inner function, H:(N) © SH.(N), Z = PxU|g. The

following statements are equivalent:
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1. Operator Z is complete;
2. Operator Z* is complete;
3. S is a Blaschke—Potapov product.

Here N is an auxiliary space (in our case it is C).

As for the case of finite-dimensional N (as in our situation),
there is simple criterion (for general operator case there is no
such criterion) for absence of the singular inner factor (we
reformulate the theorem from (Nikol'skii, 2012, p. 99) for
the half-plane):

Theorem 2.3. Let dimN < oo. The following statements are
equivalent:

1. S is a Blaschke-Potapov product;

dz
2. lim log,|det S(z)|——— = 0. 3
Jlim, [ tog et ()

Here L, is the image of the curve |{| =r < 1 under the map
14

z = ZITEV .

One can, immediately, find the scattering matrix for our
simple graph (see, e.g., Exner and Seresova, 1994). The coeffi-
cients are as follows.

2ik

= Sk —a—kcot(kL)’ )
o+ kcot(kL)
"7 20k — o — keot(kL)’ )

The scattering matrix has the form

sw=(1 ") ©

Correspondingly,

detSH) = £ P = —4k% — (o + kcot(kL)z)z. o)
(2ik — o — kcot(kL))
Remark. One can see that if k; = 0,k = k. + ik;, then the
natural property is valid: | det S| = 1.
Poles k, of the scattering matrix are given by roots k, of the
equation:

cot(kL) =2i — %, (8)

Correspondingly, roots of S(k) are at points k, (1 = k,?). Tak-
ing into account the expression for cot(kL), one reduces Eq.
(8) to the following system:
sin(k,L) cos(k,.L) ok,
sin®(k,L) + sinh*(k,L) k> + k>

©)

—sinh(k;L) cosh(k;,L) 5 ok;
sin?(k,L) + sinh* (kL) K24k

(10)

If « = 0, then one can find the solution in an explicit form:

kr:%n,ki:—%ln&nez. (11)
Correspondingly,  detS(k) has roots at  points

ky =+ i% In3, n € Z. One can see that 3k, does not depend

on #n in this simple case. It should be noted that Rk, = 0 and,
correspondingly, Ay = ké € R. It is a negative eigenvalue (i.e.
itis not a resonance). The existence of such eigenstates for anal-
ogous systems is well-known (see, e.g., (Sols et al., 1989)). The
corresponding state is added to the set of resonance states con-
sidered below.

If o720, then system (9), (10) has no solution in an analytic
form. However, the right hand sides of (9), (10) can be simply
estimated. Then, the Rouche’s theorem shows that there are
only finite number of roots below some line in C, parallel to
the real axis (it is not difficult to obtain the asymptotics of
the resonances in n, n — oo or in o, & — 0). To prove the com-
pleteness, in accordance with Theorem 2.3, we should estimate
the corresponding integral in condition (3). Let us describe
briefly the procedure of this estimation. There are two reasons
of possible breaking of condition (3): infinite length of the inte-
gration path after the limiting procedure and singularities
appearing time to time at the integration curve when one trans-
forms the curve in accordance with the limiting procedure.

The integration curve L. is a circle
{R(r)exp(it) + iC(r)|t € [0,27)}.
2n
lirlno log,| det(R(r) exp(it)
r=1-0 Jq
R "
+iC(r)))| () = (12)

- - —dt
(R(r) exp(it) + iC(r) + i)
To estimate the integral in (12), we use the Cauchy inequality

2 2n

< [ wora / e(Pdr (13)

2n

f)g(t)dt

o .

where

1) = og,| det(R(r) exp(it) + iC(1)| et
VR(0)
R(r) exp(it)+iC(r)+i *

As for jg" lg(2)|*dr, it is proved that this integral is bounded
by a constant which does not depend on r. The second integral
in (13), fozn |[£(1)|*dt, tends to zero if r — 1 — 0 (correspondingly,
R — 00, C — 0). To prove this statement, we use the informa-
tion about the resonances (i.e., singularities) positions (particu-
larly, the resonances asymptotics, see above). Consequently,

one can perform the limiting procedure in statement 2 of The-
orem 2.3. As a result, one comes to the concluding theorem.

Theorem 2.4. The system of resonant states of the Schrodinger
operator H on the graph T is complete in Ly(Q3) and is not
complete in Ly(Q3 U (=b,b)) for b > 0.

The first part of the theorem has been proved. To prove the
second statement, we change the construction slightly. Sub-
spaces D, can be chosen in another way than in Lemma 1.2:

D ={(up,ur): —uy =up,x €\ [=b,0];u1 = uy,x €D\ [0,5];
uj IMOIO,X€Q3U(—b7b)},b>07

D_={(uo,ur): uy =up,x €Qy\[—b,0]; —uy = up,x €N\ [0,b];
uj :LIO:O,XGQ3U(—b,b)},b>0.

In this case, a factor exp(2ikb) appears in the expression for
the determinant of the scattering matrix, the space L,(Q;) is
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replaced by L,(Q3; U (—b,b)). One can see that condition 2 of
Theorem 2.3 does not take place, hence, there is a non-trivial
singular inner factor. Correspondingly, one can conclude that
the system of resonant states is complete in L,(Q3) and is not
complete in L,(Q3 U (—b,b)) for b > 0. QED.
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